Abstract

String rewriting reductions of the form $t\to_R^+ utv$ , called loops , are the most frequent cause of infinite reductions (non- termination). Regarded as a model of computation, infinite reductions are unwanted whence their static detection is important. There are string rewriting systems which admit infinite reductions although they admit no loops. Their non-termination is particularly difficult to uncover. We present a few necessary conditions for the existence of loops, and thus establish a means to recognize the difficult case. We show in detail four relevant criteria: (i) the existence of loops is characterized by the existence of looping forward closures ; (ii) dummy elimination , a non-termination preserving transformation method, also preserves the existence of loops; (iii) dummy introduction , a transformation method that supports subsequent dummy elimination, likewise preserves loops; (iv) bordered systems can be reduced to smaller systems on a larger alphabet, preserving the existence and the non-existence of loops. We illustrate the power of the four methods by giving a two-rule string rewriting system over a two-letter alphabet which admits an infinite reduction but no loop. So far, the least known such system had three rules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.