Abstract
In the traditional active contour models, global region-based methods fail to segment images with intensity inhomogeneity, and local region-based methods are sensitive to initial contour. In this study, a novel fuzzy energy-based active contour model is proposed to segment medical images, which are always corrupted by intensity inhomogeneity. In order to deal with intensity inhomogeneity, a local energy term is first constructed by substituting a non-local weight for Gaussian kernel widely used in traditional local region-based models. Second, the defined adaptive force can drive the level set function to adaptively increase or decrease according to image intensity information. Therefore, the initial contour can be initialised as a constant function, which eliminates the problem caused by contour initialisation. Moreover, the proposed active contour model is a convex function. Thus, the problem, resulting from optimising a non-convex functional in the traditional active contour models, can be avoided. Experimental results validate the superiorities and effectiveness of the proposed model for image segmentation with comparisons of those yielded by several state-of-the-art techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.