Abstract
Example-based texture synthesis aims to generate a new texture from an exemplar texture and has long been drawing attention in the fields of computer graphics, computer vision, and image processing. Nevertheless, synthesizing structured textures remains a challenging task. Most previous methods rely on additional guidance channels, which encode the structured features of textures. However, estimating the guidance channel is very difficult, and often fails when a texture has unpronounced features. In this paper, we propose a novel texture synthesis method, based on non-local operators, which captures the long-range structure of a texture without the additional guidance channel. The synthesized texture is generated by minimizing non-local texture energy through an expectation–maximization like optimization algorithm. A statistical constraint based on the Wasserstein distance is also proposed to ensure that the synthesized texture preserves the global statistics of the exemplar texture. Extensive experiments show that the proposed method can stably handle textures with different scale structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.