Abstract

A large part of the earth’s surface is covered by seasonally or permanently frozen soils. Considering the negative impact of climate change, future development of such regions can be underpinned by mathematical methods for accurate analysis of heat and moisture transport in freezing and thawing soils. Reported in this paper is a novel non-local formulation of water and heat transport in unsaturated soils. The formulation uses bond-based peridynamics (PD) and consists of a set of integral–difference formulations of energy and mass conservation. Specific features of freezing/thawing soils are incorporated by a combination of van Genuthcen and Clausius–Clapeyron relations. Computational results are compared with four sets of laboratory experiments to demonstrate the efficiency of the developed approach. The model can be used to analyse the effect of water flow on heat transfer in soils during thawing of permafrost soils. Further, it can be applied in modelling climate change effects, and can be used for construction of coupled physically justified models of frost heave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.