Abstract

We introduce a stochastic individual model for the spatial behavior of an animal population of dispersive and competitive species, considering various kinds of biological effects, such as heterogeneity of environmental conditions, mutual attractive or repulsive interactions between individuals or competition between them for resources. As a consequence of the study of the large population limit, global existence of a nonnegative weak solution to a multidimensional parabolic strongly coupled model of competing species is proved. The main new feature of the corresponding integro-differential equation is the nonlocal nonlinearity appearing in the diffusion terms, which may depend on the spatial densities of all population types. Moreover, the diffusion matrix is generally not strictly positive definite and the cross-diffusion effect allows for influences growing linearly with the subpopulations' sizes. We prove uniqueness of the finite measure-valued solution and give conditions under which the solution takes values in a functional space. We then make the competition kernels converge to a Dirac measure and obtain the existence of a solution to a locally competitive version of the previous equation. The techniques are essentially based on the underlying stochastic flow related to the dispersive part of the dynamics, and the use of suitable dual distances in the space of finite measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.