Abstract
The anomalous heat transport observed in low-dimensional classical systems is associated with super-diffusive spreading of the space–time correlation of the conserved fields in the system. This leads to a non-local linear response relation between the heat current and the local temperature gradient in the non-equilibrium steady state. This relation provides a generalization of Fourier’s law of heat transfer and is characterized by a non-local kernel operator related to the fractional operators describing super-diffusion. The kernel is essentially proportional, in an appropriate hydrodynamic scaling limit, to the time integral of the space–time correlations of local currents in equilibrium. In finite-size systems, the time integral of correlation of microscopic currents at different locations over an infinite duration is independent of the locations. On the other hand, the kernel operator is space-dependent. We demonstrate that the resolution of this apparent puzzle becomes evident when we consider an appropriate combination of the limits of a large system size and a long integration time. Our study shows the importance of properly handling these limits, even when dealing with (open) systems connected to reservoirs. In particular, we reveal how to extract the kernel operator from simulated microscopic current–current correlation data. For two model systems exhibiting anomalous transport, we provide a direct and detailed numerical verifications of the kernel operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.