Abstract
The electronic structure of clean and oxygen-covered Re(0001) was investigated by combining high energy resolution core level photoelectron spectroscopy and density functional theory. For the clean surface, we detect two distinct Re 4f7/2 components shifted by 95 meV, which we ascribe to photoemission from the bulk and the top layer of the crystal. Oxygen adsorption at room temperature leads to the appearance of new core level components, which we associate to non-equivalent Re atoms from the topmost layer. In addition to the linear relationship between oxygen-induced core level shifts and number of O–Re bonds, we find that the binding energy shift also depends on the number of oxygen atoms at second and third nearest neighbor positions. This non-local effect is discussed in terms of 5d band center shift and of charge transfer between the metallic substrate and the O atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.