Abstract

AbstractThree non‐dispersive models in multi‐dimensions have been developed. The first model consists of a leading‐order homogenized equation of motion subjected to the secularity constraints imposing uniform validity of asymptotic expansions. The second, non‐local model, contains a fourth‐order spatial derivative and thus requires C1 continuous finite element formulation. The third model, which is limited to the constant mass density and a macroscopically orthotropic heterogeneous medium, requires C0 continuity only and its finite element formulation is almost identical to the classical local approach with the exception of the mass matrix. The modified mass matrix consists of the classical mass matrix (lumped or consistent) perturbed with a stiffness matrix whose constitutive matrix depends on the unit cell solution. Numerical results are presented to validate the present formulations. Copyright © 2002 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.