Abstract

Non-local boundary conditions for Euclidean quantum gravity are proposed, consisting of an integro-differential boundary operator acting on metric perturbations. In this case, the operator P on metric perturbations is of Laplace type, subject to non-local boundary conditions; in contrast, its adjoint is the sum of a Laplacian and of a singular Green operator, subject to local boundary conditions. Self-adjointness of the boundary value problem is correctly formulated by looking at Dirichlet-type and Neumann-type realizations of the operator P, following recent results in the literature. The set of non-local boundary conditions for perturbative modes of the gravitational field is written in general form on the Euclidean 4-ball. For a particular choice of the non-local boundary operator, explicit formulae for the boundary value problem are obtained in terms of a finite number of unknown functions, but subject to some consistency conditions. Among the related issues, the problem arises of whether non-local symmetries exist in Euclidean quantum gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.