Abstract

Owing to the existence of noise and intensity inhomogeneity in brain magnetic resonance (MR) images, the existing segmentation algorithms are hard to find satisfied results. In this study, the authors propose an improved fuzzy C-mean clustering method (FCM) to obtain more accurate results. First, the authors modify the traditional regularisation smoothing term by using the non-local information to reduce the effect of the noise. Second, inspired by the mechanism of the Gaussian mixture model, the distance function of FCM is defined by using the form of certain exponential function consisting of not only the distance but also the covariance and the prior probability to improve the robustness. Meanwhile, the bias field is modelled by using orthogonal basis functions to reduce the effect of intensity inhomogeneity. Finally, they use the hierarchical strategy to construct a more flexibility function, which considers the improved distance function itself as a sub-FCM, to make the method more robust and accurate. Compared with the state-of-the-art methods, experiment results based on synthetic and real MR images demonstrate its accuracy and robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.