Abstract

A novel reduced-order model (ROM) formulation for incompressible flows is presented with the key property that it exhibits non-linearly stability, independent of the mesh (of the full order model), the time step, the viscosity, and the number of modes. The two essential elements to non-linear stability are: (1) first discretise the full order model, and then project the discretised equations, and (2) use spatial and temporal discretisation schemes for the full order model that are globally energy-conserving (in the limit of vanishing viscosity). For this purpose, as full order model a staggered-grid finite volume method in conjunction with an implicit Runge-Kutta method is employed. In addition, a constrained singular value decomposition is employed which enforces global momentum conservation. The resulting ‘velocity-only’ ROM is thus globally conserving mass, momentum and kinetic energy. For non-homogeneous boundary conditions, a (one-time) Poisson equation is solved that accounts for the boundary contribution. The stability of the proposed ROM is demonstrated in several test cases. Furthermore, it is shown that explicit Runge-Kutta methods can be used as a practical alternative to implicit time integration at a slight loss in energy conservation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.