Abstract
The response of cryogenic high-resolution detectors to a short-pulse laser consists of a Poisson-distributed set of equidistant peaks that correspond to integer numbers of absorbed photons. Since the laser has a negligible intrinsic line width, the peaks can be used for detailed characterization of both the detector and the data acquisition system. We have characterized our superconducting tunnel junction (STJ) photon detectors in the UV and soft X-ray range with a pulsed 355-nm laser at rates up to 5000 counts/s. The observed peaks are described by a Gaussian to very high accuracy, with a width between ~ 1 and ~ 3 eV FWHM depending on the detector area and the absorbed energy. For high statistics, centroids can be determined with a precision of order 1 meV over an energy range of several 100 eV. This allows identifying and correcting for non-linearities in the digitizer that can otherwise limit the calibration accuracy.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.