Abstract

We study complex potentials and related non-diagonalizable Hamiltonians with special emphasis on formal definitions of associated functions and Jordan cells. The non-linear SUSY for complex potentials is considered and the theorems characterizing its structure are presented. We define the class of complex potentials invariant under SUSY transformations for (non-)diagonalizable Hamiltonians and formulate several results concerning the properties of associated functions. We comment on the applicability of these results for softly non-Hermitian PT-symmetric Hamiltonians. The role of SUSY (Darboux) transformations in increasing/decreasing of Jordan cells in SUSY partner Hamiltonians is thoroughly analyzed and summarized in the Index Theorem. The properties of non-diagonalizable Hamiltonians as well as the Index Theorem are illustrated in the solvable examples of non-Hermitian reflectionless Hamiltonians. The rigorous proofs are relegated to part II of this paper. At last, some peculiarities in resolution of identity for discrete and continuous spectra with a zero-energy bound state at threshold are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.