Abstract

A parallel adaptive dynamic relaxation (ADR) algorithm has been developed for nonlinear structural analysis. This algorithm has minimal memory requirements, is easily parallelizable and scalable to many processors, and is generally very reliable and efficient for highly nonlinear problems. Performance evaluations on single-processor computers have shown that the ADR algorithm is reliable and highly vectorizable, and that it is competitive with direct solution methods for the highly nonlinear problems considered. The present algorithm is implemented on the 512-processor Intel Touchstone DELTA system at Caltech, and it is designed to minimize the extent and frequency of interprocessor communication. The algorithm has been used to solve for the nonlinear static response of two and three dimensional hyperelastic systems involving contact. Impressive relative speedups have been achieved and demonstrate the high scalability of the ADR algorithm. For the class of problems addressed, the ADR algorithm represents a very promising approach for parallel-vector processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call