Abstract

This paper presents an analytical method for evaluating the capacity curve of masonry buildings according to non-linear static analysis. This method splits the building into stories, and the vertical structures of each story into masonry panels, which are analyzed individually by a new push-over analysis. The behavior of each panel is reproduced with an evolutive strut-and-tie model, which simulates the uncracked and cracked behavior of the panel subjected to a vertical constant force and a lateral force that increases up to the complete development of the failure mechanism. The strut-and-tie model provides the capacity curve of the panel. The composition of the capacity curves of all the panels of a story provides the capacity curve of this story. The capacity curves of all the stories of the building can be used to obtain either the maximum drift that the building can withstand or the behavior factor of the structure. Either outcome allows the specific dissipation capacity and overstrength of the masonry building to be considered in the seismic analyses, which provides ultimate limit state verifications with more reliability.The proposed method is applied to a school building. The comparison between seismic safety assessed with this method and with a linear dynamic analysis, all other parameters being equal, shows that the latter approach is overly-conservative and misleading. In fact, the specific inelastic capacity, which only the former approach can consider, influences greatly the seismic behavior of the case study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call