Abstract

To exactly implement the non-linear Hoek–Brown shear strength reduction in slope stability calculations, three aspects of the problem are considered. Firstly, the normal and shear stress relationship of the generalized Hoek–Brown criterion (2002 edition) is derived by introducing the Mohr–Coulomb instantaneous friction angle as a variable. Secondly, the instantaneous Mohr–Coulomb friction angle and cohesive strength are derived for a micro-unit at a given stress state and they can be used to describe the shear strength of the rock mass under different stress states. Finally, the implementation of the non-linear shear strength reduction is described and a slope example is selected to verify our method. This technique can be also applied to other non-linear failure criteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.