Abstract

The authors investigated the transient elongational behavior of a highly-aligned 600% volume fraction long, discontinuous fiber filled poly-ether-ketone-ketone melt with a computer-controlled extensional rheometer at 370°C. Prior experiments at controlled strain rate and stress produced τE + (t, $$\dot \varepsilon$$ ) and $$\dot \varepsilon$$ − (t, τE) similar to a shear dominated flow of a non-linear viscoelastic fluid. Stress relaxation following steady extension showed nonlinear effects in the change in stress decay rate with increasing strain rate. Continuous relaxation spectra showed a shift in the spectral peak to smaller values of λ with increasing strain rate. The Giesekus nonlinear constitutive relation modeled the elongation and stress relaxation with shearing rate at the fiber surface set by a strain rate magnification factor. Suitable for elongation, the model produced insufficient shift in the stress relaxation spectrum to account for the large change in stress decay rate exhibited in the experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.