Abstract

Understanding the relationship of population dynamics to density is central to many ecological investigations. Despite the importance of density-dependence in determining population growth, the empirical relationship between density and per capita growth remains understudied in most systems and is often assumed to be linear. In experimental studies of interspecific competition, investigators often evaluate the predicted outcomes by assuming such linear relationships, fitting linear functions, and estimating parameters of competition models. In this paper, we experimentally describe the shape of the relationship between estimated population rate of change and initial density using laboratory-reared populations of three mosquito species. We estimated per capita growth rate for these experimental populations over a 30-fold range of larval densities at a standard resource abundance. We then compared fits of linear models and several different nonlinear models for the relationship of estimated rate of change and density. We find that that the relationship between density and per capita growth is strongly non-linear in Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), and Aedes triseriatus (Say) mosquitoes. Components of population growth (survivorship, development time, adult size) are also nonlinearly related to initial density. The causes and consequences of this nonlinearity are likely to be important issues for population and community ecology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call