Abstract

A common energy harvesting device uses a piezoelectric patch on a cantilever beam with a tip mass. The usual configuration exploits the linear resonance of the system; this works well for harmonic excitation and when the natural frequency is accurately tuned to the excitation frequency. A new configuration is proposed, consisting of a cantilever beam with a tip mass that is mounted vertically and excited in the transverse direction at its base. This device is highly non-linear with two potential wells for large tip masses, when the beam is buckled. The system dynamics may include multiple solutions and jumps between the potential wells, and these are exploited in the harvesting device. The electromechanical equations of motion for this system are developed, and its response for a range of parameters is investigated using phase portraits and bifurcation diagrams. The model is validated using an experimental device with three different tip masses, representing three interesting cases: a linear system; a low natural frequency, non-buckled beam; and a buckled beam. The most practical configuration seems to be the pre-buckled case, where the proposed system has a low natural frequency, a high level of harvested power and an increased bandwidth over a linear harvester.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call