Abstract

The physical aging of supercooled glycerol induced by upward temperature steps of amplitude reaching 45K was studied by a new method consisting in heating a micrometer-thick liquid film at a rate of up to 60 000 K/s, holding it at a constant high temperature for a controlled duration before letting it quickly cool down to the initial temperature. By monitoring the final slow relaxation of the dielectric loss, we were able to obtain quantitative information on the liquid response to the initial upward step. The so-called TNM (Tool-Narayanaswamy-Moynihan) formalism provided a good description of our observations despite the large distance from equilibrium, provided that different values of the nonlinearity parameter were used for the cooling phase and for the (much further from equilibrium) heating phase. In this form, it allowed to precisely quantify how to design an ideal temperature step, i.e., where no relaxation occurs during the heating phase. It helped bringing a clear physical understanding of how the (kilosecond long) final relaxation is related to the (millisecond long) liquid response to the upward step. Finally, it made possible the reconstruction of the fictive temperature evolution immediately following a step, evidencing the highly non-linear character of the liquid response to such large amplitude temperature steps. This work illustrates both the strengths and limitations of the TNM approach. This new experimental device offers a promising tool to study far-from-equilibrium supercooled liquids through their dielectric response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call