Abstract

A multivariate spatial sampling design that uses spatial vine copulas is presented that aims to simultaneously reduce the prediction uncertainty of multiple variables by selecting additional sampling locations based on the multivariate relationship between variables, the spatial configuration of existing locations and the values of the observations at those locations. Novel aspects of the methodology include the development of optimal designs that use spatial vine copulas to estimate prediction uncertainty and, additionally, use transformation methods for dimension reduction to model multivariate spatial dependence. Spatial vine copulas capture non-linear spatial dependence within variables, whilst a chained transformation that uses non-linear principal component analysis captures the non-linear multivariate dependence between variables. The proposed design methodology is applied to two environmental case studies. Performance of the proposed methodology is evaluated through partial redesigns of the original spatial designs. The first application is a soil contamination example that demonstrates the ability of the proposed methodology to address spatial non-linearity in the data. The second application is a forest biomass study that highlights the strength of the methodology in incorporating non-linear multivariate dependence into the design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.