Abstract

Decoding upper-limb movements in invasive recordings has become a reality, but neural tuning in non-invasive low-frequency recordings is still under discussion. Recent studies managed to decode movement positions and velocities using linear decoders, even developing an online system. The decoded signals, however, exhibited smaller amplitudes than actual movements, affecting feedback and user experience. Recently, we showed that a non-linear offline decoder can combine directional (e.g., velocity) and non-directional (e.g., speed) information. In this study, it is assessed if the non-linear decoder can be used online to provide real-time feedback. Five healthy subjects were asked to track a moving target by controlling a robotic arm. Initially, the robot was controlled by their right hand; then, the control was gradually switched until it was entirely controlled by the electroencephalogram (EEG). Correlations between actual and decoded movements were generally above chance level. Results suggest that information about speed was also encoded in the EEG, demonstrating that the proposed non-linear decoder is suitable for decoding real-time arm movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call