Abstract
The non-linear non-planar steady-state responses of a near-square cantilevered beam (a special case of inextensional beams) with general imperfection under harmonic base excitation is investigated. By applying the combination of the multiple scales method and the Galerkin procedure to two non-linear integro-differential equations derived in part I, two modulation non-linear coupled first-order differential equations are obtained for the case of a primary resonance with a one-to-one internal resonance. The modulation equations contain linear imperfection-induced terms in addition to cubic geometric and inertial terms. Variations of the steady-state response amplitude curves with different parameters are presented. Bifurcation analyses of fixed points show that the influence of geometric imperfection on the steady-state responses can be significant to a great extent although the imperfection is small. The phenomenon of frequency island generation is also observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.