Abstract

Producing context-appropriate motor acts requires integrating multiple sensory modalities. Presynaptic inhibition of proprioceptive afferent neurons1-4 and afferents of different modalities targeting the same motor neurons (MNs)5-7 underlies some of this integration. However, in most systems, an interneuronal network is interposed between sensory afferents and MNs. How these networks contribute to this integration, particularly at single-neuron resolution, is little understood. Context-specific integration of load and movement sensory inputs occurs in the stick insect locomotory system,6,8-12 and both inputs feed into a network of premotor nonspiking interneurons (NSIs).8 We analyzed how load altered movement signal processing in the stick insect femur-tibia (FTi) joint control system by tracing the interaction of FTi movement13-15 (femoral chordotonal organ [fCO]) and load13,15,16 (tibial campaniform sensilla [CS]) signals through the NSI network to the slow extensor tibiae (SETi) MN, the extensor MN primarily active in non-walking animals.17-19 On the afferent level, load reduced movement signal gain by presynaptic inhibition. In the NSI network, graded responses to movement and load inputs summed nonlinearly, increasing the gain of NSIs opposing movement-induced reflexes and thus decreasing the SETi and extensor tibiae muscle movement reflex responses. Gain modulation was movement-parameter specific and required presynaptic inhibition. These data suggest that gain changes in distributed premotor networks, specifically the relative weighting of antagonistic pathways, could be a general mechanism by which multiple sensory modalities are integrated to generate context-appropriate motor activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call