Abstract

This article examines the rationale for using a shock absorber with the function of recuperating mechanical energy into electrical energy. Current trends in the transport industry, regarding the need to use autonomous power sources in the transport infrastructure, are considered. This direction is promising due to the replacement of vehicles with internal combustion engines by electric transport, as well as the need for autonomous power supply of individual nodes and aggregates. The need for autonomy emerges acutely in the conditions of the energy crisis, and at the same time, the lack of energy resources. Special attention is paid to energy recovery using the direct and conversepiezoelectric effect. The structure, chemical and physical properties, principle of operation and practical application of piezoceramic transducers, and the possibility of their use as energy harvesters (generators) are considered. The considered scientific and technical problem, which consists in determining the nature of the negative impact of various types of external oscillations on the functioning of structural elements of vehicles, to reduce which various shock absorbers or dampers are used. This work considers the use of a recuperative shock absorber of vibration loads with the use of a piezoelectricenergy harvester as a converter of mechanical energy of vibrations into electrical energy. Piezoceramic inserts are used as an energy collector in the design of an automobile hydraulic shock absorber. An assessment of the efficiency of recuperation and conclusions regarding the feasibility of use and implementation are provided. The shock absorbers which are installed to absorb vibrations consume a large amount of mechanical energy, converting it into heat which is dissipated into the atmosphere. This energy, without reducing the efficiency of functioning, can be beneficially used by using a piezoelectric generator with piezoelectric ceramics to convert mechanical energy into electrical energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.