Abstract

Abstract Slow dynamical changes in magnetic-field strength and invariance of the particles’ magnetic moments generate ubiquitous pressure anisotropies in weakly collisional, magnetized astrophysical plasmas. This renders them unstable to fast, small-scale mirror and firehose instabilities, which are capable of exerting feedback on the macroscale dynamics of the system. By way of a new asymptotic theory of the early non-linear evolution of the mirror instability in a plasma subject to slow shearing or compression, we show that the instability does not saturate quasi-linearly at a steady, low-amplitude level. Instead, the trapping of particles in small-scale mirrors leads to non-linear secular growth of magnetic perturbations, δB/B ∝ t2/3. Our theory explains recent collisionless simulation results, provides a prediction of the mirror evolution in weakly collisional plasmas and establishes a foundation for a theory of non-linear mirror dynamics with trapping, valid up to δB/B = O(1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.