Abstract

In this paper we develop Lyapunov and invariant set stability theorems for non-linear impulsive dynamical systems. Furthermore, we generalize dissipativity theory to non-linear dynamical systems with impulsive effects. Specifically, the classical concepts of system storage functions and supply rates are extended to impulsive dynamical systems providing a generalized hybrid system energy interpretation in terms of stored energy, dissipated energy over the continuous-time system dynamics and dissipated energy over the resetting instants. Furthermore, extended Kalman‐Yakubovich‐Popov conditions in terms of the impulsive system dynamics characterizing dissipativeness via system storage functions are derived. Finally, the framework is specialized to passive and non-expansive impulsive systems to provide a generalization of the classical notions of passivity and non-expansivity for non-linear impulsive systems. These results are used in the second part of this paper to develop extensions of the small gain and positivity theorems for feedback impulsive systems as well as to develop optimal hybrid feedback controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.