Abstract
Finite element analysis (FEA) is widely adopted these days to investigate relatively heavy structures such as reinforced concrete (RC) deep beam, which requires a higher investment of resources. This research aims to investigate a numerical modeling technique applicable to study the nonlinear behavior of RC deep beams by using FEA based on the software, ABAQUS. The nonlinear behavior of an RC deep beam adapted from an earlier research work is captured by using the uniaxial compressive and tensile stress-strain relationship and damage parameters of concrete. The response of the FE model is verified with the experimental results in terms of the load to midspan deflection curve and damage distribution. The ultimate shear capacity predicted by the FE model is 0.75% lower, and the corresponding displacement is 6.92% higher than the experimental results. The adopted modeling technique and the constitutive concrete models demonstrate the promising results indicating its possibilities for the investigation of RC structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.