Abstract

We consider filtration of a suspension in a homogeneous porous medium which is described by a macroscopic 1-D model including the mass exchange equation and the kinetic equation for deposit growth. The standard model assumes that suspended particles move at the same speed as the carrier fluid. However, in some experiments, a lag between the front boundary of suspended particles and the front of the carrier fluid was observed. This article proposes a modification of the standard model that provides a description of the separation between the fluid front and the particle front. For this purpose, a non-smooth non-linear function depending on the concentration of the suspension is introduced into the deposit growth equation. In case of a non-smooth suspension function, the concentration of suspended particles at the front decreases to zero in a finite time. At this moment the united front splits into the front of pure injected water and the front of suspended and retained particles. The particle front moves slower than the pure water front. In case of a linear filtration function (Langmuir coefficient), an exact solution is constructed in a closed form. For the filtration problem with a suspension function in the form of a square root, explicit analytical formulae are obtained. In case of a non-smooth filtration function, the filtration time is finite. The curvilinear boundary separates the filtration domain, where concentrations increase with time, from the stabilization domain, where the concentrations of suspended and retained particles have reached their limits. The limit speeds of the stabilization border and of the particle front coincide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.