Abstract

The transition area of bridges is non-homogeneous solid, which consists of soil embankment, transition slab and roadway layers. These transition area elements consist of various materials with different properties. Besides the imposed loads, behavior of these areas is significantly affected by uneven settlement between the bridge abutment and soil embankment. In case of integral bridges horizontal movements of a bridge caused mostly by temperature and ongoing rheological phenomena in concrete have to be taken into account. This leads to abutment deformation in combination with time dependent soil consolidation it results in varying earth pressure over the bridges lifetime together with cyclic horizontal movements of the pavement resulting in its cracks and excessive deformations. In this paper, comparison of different approaches to finite element analysis of transition areas is presented. First analysis was performed using area elements to represent the bridge structure, and volume elements to represent embankment, while second analysis was performed in more conservative way using spring based method proposed by Křížek[3], as representation of the surrounding soil. Results obtained via both methods are compared with each other as well as with data obtained from experimental measurment of a transition area conducted in Switzerland [1].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.