Abstract

Brushes formed by arm-tethered starlike polyelectrolytes may exhibit internal segregation into weakly and strongly extended populations (stratified two-layer structure) when strong ionic intermolecular repulsions induce stretching of the tethers up to the limit of their extensibility. We propose an approximate Poisson-Boltzmann theory for analysis of the structure of the stratified brush and compare it with results of numerical self-consistent field modeling. Both analytical and numerical models point to the formation of a narrow cloud of counterions (internal double electrical layer) localized inside a stratified brush at the boundary between the layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call