Abstract

The current study performs a dynamic analysis of a rotor supported by two couple stress fluid film journal bearings with non-linear suspension. The dynamics of the rotor centre and bearing centre are studied. The analysis of the rotor—bearing system is investigated under the assumptions of a couple-stress lubricant and a short journal bearing approximation. The displacements in the horizontal and vertical directions are considered for various non-dimensional speed ratios. The analysis methods employed in this study include the dynamic trajectories of the rotor centre and the bearing centre, Poincaré maps, and bifurcation diagrams. The Lyapunov exponent analysis is also used to identify the onset of chaotic motion. Numerical results show that the stability of the system varies with the non-dimensional speed ratios. Specifically, it is found that the system is quasi-periodic at a small speed ratio ( s = 0.5). At speed ratios of s = 0.6–0.7, the system is periodic. At s = 0.8–1.9, the system is quasi-periodic, but the system is periodic at s = 2.0–2.6. However, the system exhibits chaotic motion at the speed ratios s = 2.7–2.74. At the speed ratios s = 2.75–3.16, the system becomes periodic. At s = 3.17–3.30, the system is unstable. The Poincaré map has a particular form at s = 3.17, indicative of a chaotic motion. At s = 3.31–6.0, the system finally becomes periodic. The results also confirm that the stability of the system varies with the non-dimensional speed ratios s and l∗. The results of this study allow suitable system parameters to be defined such that undesirable behaviour of the rotor centre can be avoided and the bearing system life extended as a result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.