Abstract

BackgroundTranscranial direct current stimulation (tDCS) is a technique that modulates brain excitability in humans. Increasing the stimulation intensity or duration within certain limits could enhance tDCS efficacy with a polarity-dependent effect; anodal stimulation increases cortical excitability, whereas cathodal stimulation decreases excitability. However, recent studies have reported a non-linear effect of cathodal tDCS on neuronal excitability in humans, and there is no conclusive result regarding the effect of cathodal tDCS on muscle performance.MethodsOur study aimed to investigate the immediate effects of different intensities (i.e., 1, 1.5, and 2 mA and sham tDCS) of cathodal tDCS on muscle strength in healthy participants. All participants [mean age 23.17 (3.90) years] were recruited and randomly allocated into four groups (1, 1.5, and 2 mA cathodal tDCS and sham tDCS). Muscle strength in bilateral upper and lower extremities was measured before and immediately after tDCS using a handheld dynamometer.ResultsOur results showed that cathodal tDCS at 1 and 1.5 mA reduced muscle strength bilaterally in upper and lower extremity muscles, whereas stimulation at 2 mA tended to increase muscle strength on the dominant limb.ConclusionThese findings support the non-linear effects of cathodal tDCS on muscle strength, which should be considered for the clinical use of tDCS in motor rehabilitation.Trial registration: NCT04672122, date of first registration 17/12/2020.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call