Abstract

The paper studies non-linear thermal convection in a horizontal porous layer of fluid with nearly insulating boundaries and in the presence of internal heat sources. Square and hexagonal cells are found to be the only possible stable convection cells. Finite amplitude instability could exist for some particular forms of an internal heat source Q. For a uniform Q, the preferred flow pattern is that of hexagons for amplitude ε smaller than some critical value ε c , while both squares and hexagonal cells are stable for ε ⩾ ε c . The convective motion is downward at the hexagonal cell's centers. For a non-uniform Q, the qualitative features of thermal convection depend on the actual form Q. In particular, a non-uniform Q can increase or decrease the cell's size and the critical Rayleigh number at the onset of convection, and stabilize or destabilize the convective motion in the form of hexagonal cells with either upward or downward motion at the cell's centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.