Abstract

By employing the separated spin evolution quantum hydrodynamic model, non-linear evolution of obliquely propagating spin electron acoustic wave (SEAW) is presented. The solitary structures of SEAW is investigated through the Korteweg–de Vries (KdV) equation derived using reductive perturbation method. From the first order perturbations we derive the dispersion relation of SEAW and find that both the spin polarization and the propagation angle reduce the phase velocity while the electron streaming enhances it. Using small amplitude approximation, the solitary structure of SEAW is analyzed and the effects of spin polarization, propagation angle and electron streaming on the SEA soliton are studied. Our numerical results demonstrate that the spin polarization and the propagation angle play a balancing act on the soliton structures. The possible applications of our investigation to the astrophysical environments like white dwarfs is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.