Abstract

Current paradigms for neuromorphic computing focus on internal computing mechanisms, for instance using spiking-neuron models. In this study, we propose to exploit what is known about neuro-mechanical control, exploiting the mechanisms of neural ensembles and recruitment, combined with the use of second-order overdamped impulse responses corresponding to the mechanical twitches of muscle-fiber groups. Such systems may be used for controlling any analog process, by realizing three aspects: Timing, output quantity representation and wave-shape approximation. We present an electronic based model implementing a single motor unit for twitch generation. Such units can be used to construct random ensembles, separately for an agonist and antagonist ‘muscle’. Adaptivity is realized by assuming a multi-state memristive system for determining time constants in the circuit. Using SPICE-based simulations, several control tasks were implemented which involved timing, amplitude and wave shape: The inverted pendulum task, the ‘whack-a-mole’ task and a handwriting simulation. The proposed model can be used for both electric-to-electronic as well as electric-to-mechanical tasks. In particular, the ensemble-based approach and local adaptivity may be of use in future multi-fiber polymer or multi-actuator pneumatic artificial muscles, allowing for robust control under varying conditions and fatigue, as is the case in biological muscles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.