Abstract

Boyer, Gordon, and Watson have conjectured that an irreducible rational homology 3-sphere is an L-space if and only if its fundamental group is not left-orderable. Since large classes of L-spaces can be produced from Dehn surgery on knots in the 3-sphere, it is natural to ask what conditions on the knot group are sufficient to imply that the quotient associated to Dehn surgery is not left-orderable. Clay and Watson develop a criterion for determining the left-orderability of this quotient group and use it to verify the conjecture for surgeries on certain L-space twisted torus knots. We generalize a recent theorem of Ichihara and Temma to provide another such criterion. We then use this new criterion to generalize the results of Clay and Watson and to verify the conjecture for a much broader class of L-space twisted torus knots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.