Abstract

Experimental evidence and theoretical substantiation are presented for the asymptotic behavior of high-temperature magnetization of an ensemble of nanoparticles in a weak magnetic field, which was predicted earlier and which differs qualitatively from the “Langevin” limit for ideal superparamagnetic particles. It is shown that the physical reason for the new asymptotic behavior is the temperature-independent “positive” tilt of the uniform magnetization vector at local energy minima in the direction of the field; this asymptotic behavior is associated with the nonstandard thermodynamics of single-domain particles, which depends on the ratio of characteristic frequencies of regular precession and random diffusion of this vector. An alternative approach is proposed for describing the magnetic dynamics of an ensemble of nanoparticles in a magnetic field, and the precession orbits of the magnetization vector are considered as stochastic states of each particle, whereas each state is characterized by the trajectory-averaged value of magnetization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.