Abstract

A non-labeling fluorescence sensor system was developed using polydiacetylene (PDA) liposomes composed of 10,12-pentacosadiynoic acid (PCDA) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at a 8:2 molar ratio. The PDA liposomes were immobilized onto an amine-coated glass surface using peptide bonding between the carboxyl group of the liposome and the amine group of the glass surface. The optimum ratio of the cross linker (NHS/EDC) to PDA liposome was determined to be 50% for strong immobilization of the liposomes. Residual carboxyl groups of the PDA liposomes were selectively biotinylated, followed by sequential binding of streptavidin and biotin-antibody (bioreceptor). Finally, the performance of the PDA liposome chip was tested for detecting Cryptosporidium parvum, and yielded a detection limit of 1 x 10(3) oocysts/mL. From these results, it is expected that the PDA liposome chip will have high application potential for the detection of waterborne pathogens including C. parvum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call