Abstract

The scintillation aspects of dark hollow (DH) and flat topped (FT) beams propagating in the turbulent atmosphere containing the non-Kolmogorov power spectrum are investigated. It is found that low scintillations will occur when the exponent of the power spectrum is just above the numeric value of 3. Initially, the rises in scintillations will take place as the exponent becomes larger, but later the scintillation reductions will be experienced as the exponent grows further, eventually minimum scintillations will be seen when the exponent has reached the value of 4. This will be the case, for scintillation variations against propagation distance, source size, wavelength, inner and outer scales of turbulence. Furthermore, it is found that at the small source sizes, DH beams will offer less scintillation than FT beams, while at the large source sizes, the reverse will be applicable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.