Abstract

We introduce a novel noniterative algorithm for the fast and accurate reconstruction of nonuniformly sampled MRI data. The proposed scheme derives the reconstructed image as the nonuniform inverse Fourier transform of a compensated dataset. We derive each sample in the compensated dataset as a weighted linear combination of a few measured k-space samples. The specific k-space samples and the weights involved in the linear combination are derived such that the reconstruction error is minimized. The computational complexity of the proposed scheme is comparable to that of gridding. At the same time, it provides significantly improved accuracy and is considerably more robust to noise and undersampling. The advantages of the proposed scheme makes it ideally suited for the fast reconstruction of large multidimensional datasets, which routinely arise in applications such as f-MRI and MR spectroscopy. The comparisons with state-of-the-art algorithms on numerical phantoms and MRI data clearly demonstrate the performance improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.