Abstract

Digital images from diverse medical imaging modalities and from different imaging times are becoming an indispensable information resource for making clinical decisions. Image registration is an enabling technique for more fully utilizing the embedded heterogeneous image information. However, in addition to the complex differences and deformations inherent in the medical images, the increasing scope, resolution, and dimensionality of imaging pose significant challenges in this medical arena. Wavelets have shown great potential in multi-scale registration due to their superior capacity for representing image information at different resolutions and spatial frequencies. However, the application of wavelets in registration is hindered by their lack of rotation- and translation-invariance. To overcome this obstacle, this paper proposes a non-iterative hierarchical registration method based on points of interest which are extracted automatically from wavelet decompositions. The proposed algorithm for two-dimensional monomodal medical images has been validated by experiments on phantom data and clinical imaging data. This proposed non-iterative method provides a computationally efficient registration, as well as assists in avoiding the non-convergence problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.