Abstract

This paper considers the non-isothermal flow of a viscoplastic fluid on a horizontal or an inclined surface with a flat, a step-up and a step-down topography. A particular application of interest is the spread of a fixed mass—a block—of material under its own weight. The rheology of the fluid is described by the Bingham model which includes the effect of yield stress, i.e. a threshold stress which must be exceeded before flow can occur. Both the plastic viscosity and the yield stress are modelled with temperature-dependent parameters. The flow is described by a reduced model with a thin-film equation for the height of the block and a depth-averaged energy conservation equation for the heat transfer. Results show that for large values of the yield stress, only the outer fraction of the fluid spreads outward, the inner fraction remaining unyielded, hence the block only partially slumps. Conversely, for small values of the yield stress, the entire block of fluid becomes yielded and therefore slumps. We present an analysis which predicts the critical value of the yield stress for which partial slump occurs and how it depends on temperature.Graphical abstract

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.