Abstract

Particle migration and deposition, and resulting permeability impairment occurring in porous media are described by a practical phenomenological model considering temperature variation and particle transport by advection and dispersion. Variation of the filter coefficient and permeability of porous matrix by temperature and particle deposition, and other essential factors are considered by means of the special correlations of the relevant variables and dimensionless numbers. Comparison of the numerical results, obtained using a finite-difference numerical scheme with and without considering the dispersion mechanism and temperature variation, reveals the significance of such effects on fines migration and deposition, and consequent permeability impairment in porous media. Improved model presented in this article can be instrumental for scientifically guided experimentation, analysis, and optimal design of processes involving in transport of colloidal and fine particles through geological subsurface formations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.