Abstract

Abstract The application of a general thermodynamical mass and energy transport model to the coupled heat and moisture transfer in porous materials results in a balance equation system and the related constitutive equations of the considered quantities. The constitutive equations describe moisture transport in a phase-separated manner leading into phase-divided hygric transport coefficients (liquid water permeability, water vapour diffusivity). A conceptual model is presented in the paper in order to circumvent the difficulties resulting from non-isothermal overlaying moisture transport processes. Since phase-divided hygric transport coefficients are not directly measurable, but moisture transport coefficients in distinct hygric ranges, moisture conductivities and a phase dividing function are introduced. The moisture conductivities include liquid water and water vapour transport. For a known phase dividing function, the phase-divided hygric transport coefficients of the balance equation system can be calculated from the measurable moisture conductivities. The influence of a variation of the introduced phase-dividing function on non-isothermal moisture transport processes is investigated by means of computer simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call