Abstract

The quality of the mixing of different raw materials, i.e. the uniformity of the mixture, is a key issue that will determine the morphology and the specific product properties of the resulting compound [1,2]. Numerical simulation of flow in extruder components provides a new insight, both qualitative and quantitative, into those features. 3-D transient numerical simulations of twin screw extruder (TSE) configurations are presented. A special method, the mesh superposition technique (MST), has been introduced to provide a convenient way to model intermeshing TSEs without involving any remeshing complexity [3]. It has been validated in previous work for isothermal cases [4]. To account for the important non-isothermal effects, the method is compared against numerical and experimental results for additional, non-isothermal validation [5]. We present an analysis of different non-isothermal features that characterize the flow induced by a co-rotating as well as a contra-rotating configuration. Both cases are compared in terms of pressure profiles, temperature fields, resulting torque imposed on the screws and from a mixing point of view to illustrate a typical analysis of different TSEs and provide objective information to select the most appropriate configuration for specific process requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.