Abstract
In the present work, the Coats-Redfern method was used to determine the kinetic parameters and the possible reaction mechanism of the thermal degradation of ultra-high molecular mass polyethene and its composites with fiber monocrystals in static air at three different heating rates − 6, 10 and 16 K min−1. The analysis of the results obtained showed that the thermal degradation process of pure ultra-high molecular mass polyethene corresponded to a diffusion controlled reaction (three-dimentional diffusion, mechanism D3), while its composites with fiber monocrystals degraded by two concurrent mechanisms (diffusion one D3 and A1,F1 mechanism). The fiber monocrystals used increased the thermal stability of the composite materials obtained. The values of the activation energy, frequency factor, the changes of entropy, enthalpy and Gibbs energy for the active complex of the composites were calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.