Abstract
P₃O5-10 pillared Mg/Al hydrotalcite (HTs) as a functional fire-retarding filler was successfully prepared by impregnation-reconstruction, where the HTs was used to prepare polypropylene (PP) and HTs composite (PP/HTs). Thermal decomposition was crucial for correctly identifying the thermal behavior for the PP/HTs, and studied using thermogravimetry (TG) at different heating rates. Based on single TG curves and Málek method, as well as 41 mechanism functions, the thermal decompositions of the PP/HTs composite and PP in nitrogen atmosphere were studied under non-isothermal conditions. The mechanism functions of the thermal decomposition reactions for the PP/HTs composite and PP were separately "chemical reaction F₃" and "phase boundary reaction R₂," which were also in good agreement with corresponding experimental data. It was found that the addition of the HTs increased the apparent activation energy Ea of the PP/HTs comparing to the PP, which improved the thermal stability of the polypropylene. A difference in the set of kinetic and thermodynamic parameters was also observed between the PP/HTs and PP, particularly with respect to lower ΔS≠ value assigned to higher thermal stability of the PP/HTs composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.