Abstract

Current studies on crystallization kinetics for glass fiber-reinforced poly(ether ether ketone) mainly focused on short glass fiber-reinforced composites and their isothermal crystallization. It is worth noting that continuous glass fiber-reinforced poly(ether ether ketone) composite (CGF/PEEK) possesses relatively higher mechanical performance than short fiber-reinforced PEEK under high temperature. Here, for the first time, we investigate the non-isothermal crystallization kinetics and melting behavior of CGF/PEEK by differential scanning calorimetry at four different cooling rates. By evaluating the crystallite size of CGF/PEEK using X-ray diffraction, it is found that with the decreasing cooling rate, the crystallite size distribution evolves more uniform, and the size of crystallites enlarges. Besides, by systematical analysis, we find the modified Avrami equation can well describe crystallization behavior of the CGF/PEEK. The higher Avrami value of CGF/PEEK than pure PEEK indicates that CGF could introduce a more complex geometry effect on the crystallization. The addition of CGF greatly reduces the absolute value of crystallization activation energy of PEEK, suggesting that CGF can reduce the nucleation energy barrier. The obtained results illustrate that CGF can accelerate the nucleation rate due to heterogeneous nucleation while reduce the growth rate due to retarded polymer chain mobility. And the cooling conditions can influence crystal growth and morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.