Abstract
The non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 glassy alloy were investigated by differential scanning calorimetry. The activation energies corresponding to the characteristic temperatures have been calculated by Kissinger and Ozawa equations. Based on Kissinger–Akahira–Sunose and Ozawa–Flynn–Wall models, it has been found that the local activation energy is higher at the beginning of the crystallization process for the first exothermic peak. The local Avrami exponent indicates that the first-step crystallization is mainly a high-dimensional nucleation and growth with an increasing nucleation rate. According to the calculated fragility index, Ti41Zr25Be28Fe6 alloy can be classified as “strong glass former.” The studied alloy also possesses a critical size up to centimeter order, and the high glass-forming ability is probably related to the relatively low Gibbs energy difference between the liquid and crystalline states. The critical cooling rate of Ti41Zr25Be28Fe6 glassy alloy has also been determined using Barandiaran–Colmenero’s method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.